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Abstract
A relaxation process of a two-qubit system is studied by means of the quantum
master equation. The two qubits interact with each other via the Ising-type
coupling, and one of the two qubits is placed under the influence of a thermal
reservoir and the other is isolated from an environmental system. It is shown
that the interaction between the two qubits significantly affects the relaxation
process. The synthetic effect of the interaction between the qubit–qubit
interaction and qubit–reservoir interaction induces the entanglement sudden-
birth and the violation of the Bell inequality, even if there is no entanglement
in an initial state of the two qubits.

PACS numbers: 03.65.Yz, 03.65.Ud

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum mechanical properties such as coherence and entanglement are essential for
understanding physical phenomena [1] and realizing quantum information processing
[2, 3] which includes quantum communication and quantum computation. A physical system
in the real world is not isolated from its surrounding environment. Since quantum mechanical
properties are very fragile under the influence of an environmental system (a thermal reservoir),
understanding the decoherence or relaxation of a quantum system is very important in not only
quantum physics but also quantum information science. The investigation of the relaxation
processes has a long history in nonequilibrium quantum statistical mechanics [4, 5]. They are
studied by means of the phenomenological method [6, 7], the stochastic method [8] and the
microscopic method [9]. In particular, the quantum master equation derived by the projection
operator method [10–12] is very useful for investigating the relaxation process of a quantum
system. It has recently been applied for understanding the decoherence in quantum information
processing [13–21].
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qubit A qubit Breservoir

Figure 1. The schematic representation of the interacting two-qubit system. Qubit A interacting
with qubit B is embedded in a thermal reservoir. Qubit B is isolated from a thermal reservoir.

When a relevant system consists of interacting subsystems, as pointed out in [4], the effects
of the interaction on the relaxation process are essential for deriving correct time evolution
and equilibrium state of the relevant system. Since the effects are very difficult to treat, they
are neglected in many cases. Recently the decoherence of an interacting two-qubit system
has been investigated by the quantum master equations with the damping operators which
include the effects of the interaction between the qubits [22–25]. In these works, however, the
interaction effects on the relaxation process of the relevant system are not so clear. Therefore,
in this paper, in order to find explicitly how an interaction between subsystems affects the
decoherence of a relevant system, using the quantum master equation derived by the projection
operator method, we will investigate the relaxation process of interacting two qubits under the
influence of a thermal reservoir.

This paper is organized as follows. In section 2, we explain a model of two-qubit
system, where the two qubits interacts with each other by the Ising coupling and one of the
two qubits is placed under the influence of a thermal reservoir. We apply the rotating-wave
approximation in the interaction between the qubit and thermal reservoir. In section 3, using
the projection operator method, we derive the quantum master equation which describes the
reduced dynamics of the two-qubit system. In deriving the quantum master equation, we take
into account of the interaction between the two qubits. In section 4, we solve the quantum
master equation. In section 5, we investigate the time evolution of the single qubit placed
under the influence of the thermal reservoir and show how the interaction between the qubits
affects the relaxation process. In section 6, we derive the relaxation process of the two-
qubit entanglement. We show that the synthetic effect of the qubit–qubit interaction and the
qubit–reservoir interaction induces the entanglement sudden-birth and the violation of the
Bell inequality, even though there is no entanglement in an initial state of the two qubits. In
section 7, we give concluding remarks.

2. Interacting two qubits in a thermal reservoir

In this section, we explain a model considered in this paper. We suppose that two qubits, A

and B, interact with each other through the Ising-type coupling, the Hamiltonian of which is
given by

ĤQ = h̄ωAŜz
A + h̄ωBŜz

B + 2h̄J Ŝz
AŜz

B, (1)

where Ŝ
x,y,z

A,B is the spin-1/2 operator of the qubit A or B. In the rest of this paper, we
assume that the frequencies ωA and ωB are positive while the coupling constant J can
take positive and negative values. The eigenvalues of the two-qubit Hamiltonian ĤQ are
E00 = (h̄/2)(ωA + ωB + J ), E01 = (h̄/2)(ωA − ωB − J ), E10 = (h̄/2)(−ωA + ωB − J )

and E11 = (h̄/2)(−ωA − ωB + J ) with the corresponding eigenstates |00〉, |01〉, |10〉 and
|11〉, where Ŝz

A,B |0〉 = (1/2)|0〉 and Ŝz
A,B |1〉 = −(1/2)|1〉. We suppose that qubit A is

placed under the influence of a thermal reservoir while qubit B is isolated from a thermal
reservoir. The system that we consider in this paper is depicted in figure 1. Although
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Table 1. The reservoir operator R̂ in the rotating-wave approximation.

Qubit B in |0〉 Qubit B in |1〉
ωA < −J λR̂ = ∑

k gkâ
†
k λR̂ = ∑

k gkâk

ωA > |J | λR̂ = ∑
k gkâk λR̂ = ∑

k gkâk

ωA < J λR̂ = ∑
k gkâk λR̂ = ∑

k gkâ
†
k

the system is highly asymmetric since the thermal reservoir interacts only with qubit A,
such an asymmetric system can be realized by means of the dynamical decoupling method
[26, 27] which can be formulated within the framework of the quantum master equation
[28–30]. For example, the phase-kick-type dynamical decoupling method [31] can make the
interaction between qubit B and the thermal reservoir negligibly small without affecting the
qubit–qubit and qubit A–reservoir interactions.

Applying the rotating-wave approximation [32], we have the interaction Hamiltonian Ĥ int

between qubit A and the thermal reservoir

Ĥ int = h̄λ
(
Ŝ+

AR̂ + Ŝ−
AR̂†), (2)

where Ŝ±
A = Ŝx

A ± iŜ−
A and R̂ represents some operator of the thermal reservoir that we

determine below. We assume that the thermal reservoir which influences the qubit A consists
of independent harmonic oscillators in the thermal equilibrium state. The Hamiltonian of
the reservoir is given by ĤR = ∑

k h̄ωkâ
†
kâk , where âk and â

†
k are bosonic annihilation

and creation operator, satisfying the commutation relation
[
âk, â

†
k′
] = δkk′ . The equilibrium

state of the thermal reservoir is ρ̂R = (1/Z) e−ĤR/kBT , where Z is the partition function
and T is an absolute temperature of the thermal reservoir. Before applying the rotating-
wave approximation, the interaction Hamiltonian between qubit A and the reservoir is given
by Ĥ ′

int = ∑
k h̄gk

(
Ŝ+

A + Ŝ−
A

)(
âk + â

†
k

)
, where gk represents the coupling constant. In the

interaction picture, we obtain

Ĥ ′
int(t) =

∑
k

gk

[
Ŝ+

Aâk e−i(ωk−ωA−2J Ŝz
B )t + Ŝ−

Aâk e−i(ωk+ωA+2J Ŝz
B )t (3)

+ Ŝ+
Aâ

†
k ei(ωk+ωA+2J Ŝz

B )t + Ŝ−
Aâ

†
k ei(ωk−ωA−2J Ŝz

B )t
]
, (4)

which clearly shows that the rotating and counter-rotating terms depend on the parameters
ωA and J and the state of qubit B. In fact, we find that the rotating terms are the first
term in equation (3) and the second term in equation (4) if qubit B is in the state |0〉 and
ωA + J > 0 or if qubit B is in the state |1〉 and ωA − J > 0 while they are the second term in
equation (3) and the first term in equation (4) if the qubit B is in the state |0〉 and ωA + J < 0
or if qubit B is in the state |1〉 and ωA − J < 0. Thus, the reservoir operator R̂ in
equation (2) is given by λR̂ = ∑

k gkâk or λR̂ = ∑
k gkâ

†
k , depending on the situation

that we consider. The result is summarized in table 1

3. Quantum master equation for the two-qubit system

In order to investigate the reduced dynamics of the interacting two-qubit system, we derive
the quantum master equation by means of the projection operator method [9–12]. The time
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evolution of the density matrix Ŵ (t) of the total system consisting of the two-qubit system
and the thermal reservoir is determined by the Liouville–von Neumann equation,

∂

∂t
Ŵ (t) = − i

h̄
[Ĥ 0 + Ĥ int, Ŵ (t)], (5)

where we set the free part Ĥ 0 = ĤQ + ĤR of the total Hamiltonian. In the interaction picture
introduced by Ŵ int(t) = e(it/h̄)Ĥ 0Ŵ (t) e−(it/h̄)Ĥ 0 , we obtain

∂

∂t
Ŵ int(t) = − i

h̄
[Ĥ int(t), Ŵ

int(t)], (6)

where Ĥ int(t) is given by

Ĥ int(t) = h̄λ
[
Ŝ+

A(t)R̂(t) + Ŝ−
A(t)R̂†(t)

]
. (7)

In this equation, we set R̂(t) = e(it/h̄)ĤR R̂ e−(it/h̄)ĤR and the spin operator Ŝ±
A(t) is given by

Ŝ±
A(t) = e±i(ωA+2J Ŝz

B )t Ŝ±
A. (8)

Applying the projection operator method [9–12] to the Liouville–von Neumann
equation (6), we can derive the time-convolutionless quantum master equation of the two-
qubit system. When the qubit–reservoir interaction is weak, up to the second order with
respect to the qubit–reservoir coupling, we obtain

∂

∂t
Ŵ int

Q (t) = − 1

h̄2

∫ t

0
dt ′ TrR[Ĥ int(t), [Ĥ int(t

′), Ŵ int
Q (t) ⊗ ρ̂R]], (9)

where Ŵ int
Q (t) = TrRŴ int(t) is the reduced density matrix of the two-qubit system and TrR

stands for the trace operation over the Hilbert space of the thermal reservoir. Substituting
equation (7) into equation (9), we can obtain the time-convolutionless quantum master equation
in the Schrödinger picture,
∂

∂t
ŴQ(t) = − i

h̄
[ĤQ, ŴQ(t)] + φ−+

(
t;ωA + 2J Ŝz

B

)[
Ŝ−

AŴQ(t), Ŝ+
A

]
+

[
Ŝ−

A, ŴQ(t)Ŝ+
A

]
φ
†
−+

(
t;ωA + 2J Ŝz

B

)
+ φ+−

(
t;ωA + 2J Ŝz

B

)[
Ŝ+

AŴQ(t), Ŝ−
A

]
+

[
Ŝ+

A, ŴQ(t)Ŝ−
A

]
φ
†
+−

(
t;ωA + 2J Ŝz

B

)
. (10)

In this equation, the functions φ−+(t;ω) and φ+−(t;ω) are given by

φ−+(t;ω) = λ2
∫ t

0
dt ′ 〈R̂(t ′)R̂†(0)〉 eiωt ′ , (11)

φ+−(t;ω) = λ2
∫ t

0
dt ′ 〈R̂†(t ′)R̂(0)〉 e−iωt ′ , (12)

where 〈· · ·〉 = Tr[· · · ρ̂R]. In the rest of this paper, we consider the dynamics of the two-
qubit system in the Born–Markov approximation [4]. In this approximation, φ−+(t;ω) and
φ+−(t;ω) are replaced with φ−+(∞;ω) ≡ φ−+(ω) and φ+−(∞;ω) ≡ φ+−(ω). Thus, the
quantum master equation of the two-qubit system becomes

∂

∂t
ŴQ(t) = − i

h̄
[ĤQ, ŴQ(t)] + L̂(0)

Q ŴQ(t) + L̂(1)
Q ŴQ(t), (13)

where the superoperators L̂(0)
Q and L̂(1)

Q are given by

L̂(0)
Q ŴQ(t) = φ

(+)
−+(ωA)

[
Ŝ−

AŴQ(t), Ŝ+
A

]
+ φ

(+) ∗
−+ (ωA)

[
Ŝ−

A, ŴQ(t)Ŝ+
A

]
+ φ

(+)
+−(ωA)

[
Ŝ+

AŴQ(t), Ŝ−
A

]
+ φ

(+) ∗
+− (ωA)

[
Ŝ+

A, ŴQ(t)Ŝ−
A

]
, (14)

4
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and

L̂(1)
Q ŴQ(t) = φ

(−)
−+ (ωA)Ŝz

B

[
Ŝ−

AŴQ(t), Ŝ+
A

]
+ φ

(−) ∗
−+ (ωA)

[
Ŝ−

A, ŴQ(t)Ŝ+
A

]
Ŝz

B

+ φ
(−)
+− (ωA)Ŝz

B

[
Ŝ+

AŴQ(t), Ŝ−
A

]
+ φ

(−) ∗
+− (ωA)

[
Ŝ+

A, ŴQ(t)Ŝ−
A

]
Ŝz

B. (15)

In these equations, we set

φ
(+)
∓±(ω) = 1

2 [φ∓±(ω + J ) + φ∓±(ω − J )], (16)

φ
(−)
∓±(ω) = φ∓±(ω + J ) − φ∓±(ω − J ). (17)

The quantum master equation has the two damping parts: one is described by the superoperator
L̂(0)

Q and the other by the superoperator L̂(1)
Q . In the former, the effects of the interaction

between the qubits appear only in the coefficients φ
(+)
−+(ωA) and φ

(+)
+−(ωA). The operation

of each term is the same as that obtained in the absence of the interaction. In the latter, the
interaction between the qubits not only modifies the coefficients but also changes the operation
of the superoperator since it includes the operator Ŝz

B of the qubit B. Here we remark that
the irreversible part of the superoperator L̂(0)

Q is the diagonal form of the Lindblad operator

while that of the superoperator L̂(1)
Q is the off-diagonal form [9]. Then the quantum master

equation (13) is the Lindblad-type equation.
To solve the quantum master equation (13), we consider the matrix elements with respect

to the qubit B and we set Ŵ
jk

A (t) = B〈j |Ŵ (t)|k〉B (j, k = 0, 1) which is an operator of the
qubit A. Here |k〉B is the eigenstate of Ŝz

B such that Ŝz
B |0〉B = 1

2 |0〉B and Ŝz
B |1〉B = − 1

2 |1〉B .
Then the reduced density matrix of qubit A is given by ρ̂A(t) = TrBŴQ(t) = Ŵ 00

A (t)+Ŵ 11(t).
From equation (13), we obtain the equations of motion for the operator Ŵ

jk

A (t),

∂

∂t
Ŵ 00

A (t) = −i(ωA + J )
[
Ŝz

A, Ŵ 00
A (t)

]
+ φ−+(ωA + J )

[
Ŝ−

AŴ 00
A (t), Ŝ+

A

]
+ φ∗

−+(ωA + J )
[
Ŝ−

A, Ŵ 00
A (t)Ŝ+

A

]
+ φ+−(ωA + J )

[
Ŝ+

AŴ 00
A (t), Ŝ−

A

]
+ φ∗

+−(ωA + J )
[
Ŝ+

A, Ŵ 00
A (t)Ŝ−

A

]
, (18)

∂

∂t
Ŵ 11

A (t) = −i(ωA − J )
[
Ŝz

A, Ŵ 11
A (t)

]
+ φ−+(ωA − J )

[
Ŝ−

AŴ 11
A (t), Ŝ+

A

]
+ φ∗

−+(ωA − J )
[
Ŝ−

A, Ŵ 11
A (t)Ŝ+

A

]
+ φ+−(ωA − J )

[
Ŝ+

AŴ 11
A (t), Ŝ−

A

]
+ φ∗

+−(ωA − J )
[
Ŝ+

A, Ŵ 11
A (t)Ŝ−

A

]
, (19)

∂

∂t
Ŵ 01

A (t) = −iωA

[
Ŝz

A, Ŵ 01
A (t)

] − iωBŴ 01
A (t) − iJ

{
Ŝz

A, Ŵ 01
A (t)

}
+ φ−+(ωA + J )

[
Ŝ−

AŴ 01
A (t), Ŝ+

A

]
+ φ∗

−+(ωA − J )
[
Ŝ−

A, Ŵ 01
A (t)Ŝ+

A

]
+ φ+−(ωA + J )

[
Ŝ+

AŴ 01
A (t), Ŝ−

A

]
+ φ∗

+−(ωA − J )
[
Ŝ+

A, Ŵ 01
A (t)Ŝ−

A

]
, (20)

∂

∂t
Ŵ 10

A (t) = −iωA

[
Ŝz

A, Ŵ 10
A (t)

]
+ iωBŴ 10

A (t) + iJ
{
Ŝz

A, Ŵ 10
A (t)

}
+ φ−+(ωA − J )

[
Ŝ−

AŴ 10
A (t), Ŝ+

A

]
+ φ∗

−+(ωA + J )
[
Ŝ−

A, Ŵ 10
A (t)Ŝ+

A

]
+ φ+−(ωA − J )

[
Ŝ+

AŴ 10
A (t), Ŝ−

A

]
+ φ∗

+−(ωA + J )
[
Ŝ+

A, Ŵ 10
A (t)Ŝ−

A

]
, (21)

with {Â, B̂} = ÂB̂ + B̂Â. Here we introduce the following real parameters which characterize
the relaxation process of the two-qubit system:

�++ = Im[φ−+(ωA + J ) − φ+−(ωA + J )], (22)

5
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�−− = Im[φ−+(ωA − J ) − φ+−(ωA − J )], (23)

�+− = Im[φ−+(ωA + J ) − φ+−(ωA − J )], (24)

�−+ = Im[φ−+(ωA − J ) − φ+−(ωA + J )], (25)

	++ = Re[φ−+(ωA + J ) + φ+−(ωA + J )], (26)

	−− = Re[φ−+(ωA − J ) + φ+−(ωA − J )], (27)

	+− = Re[φ−+(ωA + J ) + φ+−(ωA − J )], (28)

	−+ = Re[φ−+(ωA − J ) + φ+−(ωA + J )] (29)

and

σ+ = Re[φ+−(ωA + J ) − φ−+(ωA + J )]

Re[φ+−(ωA + J ) + φ−+(ωA + J )]
, (30)

σ− = Re[φ+−(ωA − J ) − φ−+(ωA − J )]

Re[φ+−(ωA − J ) + φ−+(ωA − J )]
. (31)

Since the reservoir is in the thermal equilibrium state, the Kubo–Martin–Schwinger (KMS)
condition [33, 34] is satisfied. For the reservoir operators R̂ and R̂†, we obtain the
equality 〈R̂(t)R̂†(0)〉 = 〈R̂†(0)R̂(t + ih̄/kBT )〉 which yields the detailed balance condition
Re φ−+(ω) = eh̄ω/kBT Re φ+−(ω) [9]. Then we find that the parameters σ+ and σ− are given by

σ± = − tanh

[
h̄(ω ± J )

2kBT

]
. (32)

If we ignore the effects of the interaction between the two qubits and we set L̂(1)
Q = 0, we have

σ± = σ0 and �jk = �0 and 	jk = 	0 (j, k = +,−) with

σ0 = − tanh

(
h̄ω

2kBT

)
, i�0 + 	0 = φ−+(ω) − φ+−(ω). (33)

The parameters which characterize the relaxation process become independent of the coupling
constant J.

4. Time evolution of the two-qubit system

In this section, we solve equations (18)–(21) to find the reduced dynamics of the two-qubit
system. First the reduced dynamics of the qubit A is obtained by solving equations (18) and
(19):

Ŵ 00
A (t) = 1

2
{a1(0)1̂ + e−i(ωA+J+�++)t−	++t a∗(0)σ̂ + + ei(ωA+J+�++)t−	++t a(0)σ̂−

+ [e−2	++t az(0) + σ+(1 − e−2	++t )a1(0)]σ̂z}, (34)

Ŵ 11
A (t) = 1

2
{b1(0)1̂ + e−i(ωA−J+�−−)t−	−−t b∗(0)σ̂ + + ei(ωA−J+�−−)t−	−−t b(0)σ̂−

+ [e−2	−−t bz(0) + σ−(1 − e−2	−−t )b1(0)]σ̂z}, (35)

where the parameters a1(0), a(0), az(0), b1(0), b(0) and bz(0) are determined by the initial
condition, that is,

a(0) = 〈10|ŴQ(0)|00〉, (36)

6
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a1(0) = 〈00|ŴQ(0)|00〉 + 〈10|ŴQ(0)|10〉, (37)

az(0) = 〈00|ŴQ(0)|00〉 − 〈10|ŴQ(0)|10〉, (38)

b(0) = 〈11|ŴQ(0)|01〉, (39)

b1(0) = 〈01|ŴQ(0)|01〉 + 〈11|ŴQ(0)|11〉, (40)

bz(0) = 〈01|ŴQ(0)|01〉 − 〈11|ŴQ(0)|11〉. (41)

In equations (34) and (35), σ̂x,y,z is the Pauli matrix and σ̂± = (σ̂x + ±σ̂y)/2. The the reduced
density matrix of the qubit A is given by ρ̂A(t) = Ŵ 00

A (t) + Ŵ 11
A (t). Since Trρ̂A(t) = 1, the

equality a1(0) + b1(0) = 1 holds.
When we investigate the decay of the two-qubit entanglement, we assume that the two

qubits are initially prepared in the X-state [35] which includes the Werner state [36] and the
maximally entangled mixed state [37, 38]. The density matrix of the X-state is given by

ŴQ(0) =

⎛
⎜⎜⎝

a(0) 0 0 x(0)

0 b(0) y(0) 0
0 y∗(0) c(0) 0

x∗(0) 0 0 d(0)

⎞
⎟⎟⎠ , (42)

where a(0), b(0), c(0) and d(0) are non-negative and a(0) + b(0) + c(0) + d(0) = 1, and√
a(0)d(0) � |x(0)| and

√
b(0)c(0) � |y(0)| must be satisfied due to ŴQ(0) > 0 and

Tr ŴQ(0) = 1. The quantum master equation (13) preserves the X-state and we obtain the
two-qubit state ŴQ(t) at time t:

ŴQ(t) =

⎛
⎜⎜⎜⎜⎝

〈0|Ŵ 00
A (t)|0〉 0 0 〈0|Ŵ 01

A (t)|1〉
0 〈0|Ŵ 11

A (t)|0〉 〈0|Ŵ 10
A (t)|1〉 0

0 〈1|Ŵ 01
A (t)|0〉 〈1|Ŵ 00

A (t)|1〉 0

〈1|Ŵ 10
A (t)|0〉 0 0 〈1|Ŵ 11

A (t)|1〉

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

a(t) 0 0 x(t)

0 b(t) y(t) 0
0 y∗(t) c(t) 0

x∗(t) 0 0 d(t)

⎞
⎟⎟⎠ , (43)

with

a(t) = 1
2 [1 + σ+ + (1 − σ+) e−2	++t ]a(0) + 1

2 (1 + σ+)[1 − e−2	++t ]c(0), (44)

b(t) = 1
2 [1 + σ− + (1 − σ−) e−2	−−t ]b(0) + 1

2 (1 + σ−)[1 − e−2	−−t ]d(0), (45)

c(t) = 1
2 (1 − σ+)[1 − e−2	++t ]a(0) + 1

2 [1 − σ+ + (1 + σ+) e−2	++t ]c(0), (46)

d(t) = 1
2 (1 − σ−)[1 − e−2	−−t ]b(0) + 1

2 [1 − σ− + (1 + σ−) e−2	−−t ]d(0), (47)

x(t) = e−i(ωA+ωB+�+−)t−	+−t x(0), (48)

y(t) = e−i(ωA−ωB+�−+)t−	−+t y(0). (49)

The entanglement of the two-qubit state can be measured by the concurrence [39]. For the
X-state ŴQ(t), the concurrence is given by [35]

C(t) = 2 max[0, |x(t)| −
√

b(t)c(t), |y(t)| −
√

a(t)d(t)], (50)

which will be used to investigate the decay of the two-qubit entanglement.

7
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5. Relaxation process of the single qubit

We investigate the relaxation process of qubit A interacting with the thermal reservoir,
which can be controlled by the qubit B. We suppose that the qubit A is initially in a
pure state |ψA〉 = α|0〉 + β|1〉 (|α|2 + |β|2 = 1) and qubit B is prepared in a quantum
state described by a density matrix ρ̂B . The initial state of the two-qubit system is
ŴQ(0) = |ψA〉〈ψA| ⊗ ρ̂B . In this case, the parameters in equations (34) and (35) are
given respectively by a1(0) = P0, a(0) = 2α∗βP0, az(0) = (|α|2 − |β|2)P0, b1(0) = P1,
b(0) = 2α∗βP1 and bz(0) = (|α|2 − |β|2)P1 with P0 = 〈0|ρ̂B |0〉 and P1 = 〈1|ρ̂B |1〉. Then
the reduced quantum state of qubit A is given by

ρ̂A(t) = 1
2 + α∗β[e−i(ωA+J+�++)t−	++tP0 + e−i(ωA−J+�−−)t−	−−tP1]σ̂ +

+ αβ∗[ei(ωA+J+�++)t−	++tP0 + ei(ωA−J+�−−)t−	−−tP1]σ̂−

+ 1
2 [(|α|2 − |β|2)(e−2	++tP0 + e−2	−−tP1)

+ σ+(1 − e−2	++t )P0 + σ−(1 − e−2	−−t )P1]σ̂z. (51)

The average values of σ̂z and σ̂± are calculated to be
〈
σ̂ z

A(t)
〉 = (|α|2 − |β|2)(e−2	++tP0 + e−2	−−tP1) + σ+(1 − e−2	++t )P0 + σ−(1 − e−2	−−t )P1,

(52)

〈σ̂ +(t)〉 = αβ∗[ei(ωA+J+�++)t−	++tP0 + ei(ωA−J+�−−)t−	−−tP1]. (53)

This result shows that the relaxation times of
〈
σ̂ z

A(t)
〉

and 〈σ̂ +(t)〉 are 1/2	++ and 1/	++ for
P0 = 1 while they are 1/2	−− and 1/	−− for P1 = 1. The equilibrium value of

〈
σ̂ z

A(t)
〉

becomes
〈
σ̂ z

A(∞)
〉 = σ+P0 + σ−P1. (54)

These results imply that the relaxation process of qubit A strongly depends on the state of
qubit B. Since qubit B has the Ising-type coupling with qubit A and it does not interact with the
thermal reservoir, the diagonal elements of the density matrix of qubit B remains unchanged
during the time evolution. Thus, it is not remarkable that the population P0 (or P1) of the initial
state of qubit B appears in the equilibrium value

〈
σ̂ z

A(∞)
〉
of qubit A. If we ignore the interaction

effects on the relaxation process, we have
〈
σ̂ z

A(t)
〉 = (|α|2 − |β|2) e−2	0t + σ0(1 − e−2	0t ) and〈

σ̂ +
A(t)

〉 = αβ∗ ei(ωA+�0)t−	0t which do not depend on the state of the qubit B. In particular,
when the thermal reservoir is in the vacuum state (T = 0), we obtain

〈
σ̂ z

A(∞)
〉 =

⎧⎪⎪⎨
⎪⎪⎩

−1 (0 < J < ωA),

1 − 2P0 (0 < ωA < J),

2P0 − 1 (0 < ωA < −J ),

−1 (0 < −J < ωA).

(55)

It is obvious that when T = 0, qubit A relaxes into the lower energy state. The parameters
(ωA, J ) and qubit B determine which state |0〉 or |1〉 has the lower energy.

In order to investigate the relaxation process, we have to determine the damping constants
	jk and phase shifts �jk . For this purpose, we assume the Ohmic dissipation [40] in which
the spectral density of the qubit–reservoir interaction is given by

∑
k

g2
k δ(ω − ωk) = 1

π
Gω e−ω/ωc ≡ D(ω), (56)

8
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where G is a positive constant which characterizes the interaction strength and ωc is a cut-off
frequency of the thermal reservoir. Then, we can derive

λ2
∫ ∞

0
dt

〈( ∑
k

gkâk e−iωkt

)( ∑
k

gkâ
†
k

)〉
eiωt

= πD(ω)[n̄(ω) + 1] + i
∫ ∞

0
dω′ P

ω − ω′ D(ω′)[n̄(ω′) + 1]. (57)

λ2
∫ ∞

0
dt

〈( ∑
k

gkâ
†
k eiωkt

)(∑
k

gkâk

)〉
eiωt

= πD(ω)n̄(ω) + i
∫ ∞

0
dω′ P

ω − ω′ D(ω′)n̄(ω′), (58)

where n̄(ω) = (eh̄ω/kBT − 1)−1 and P stands for the principal value integral. Then from the
consideration in section 2, we obtain the damping parameters

	++ = G(ωA + J ) e−(ωA+J )/ωc [2n̄(ωA + J ) + 1], (59)

	−− = G(ωA − J ) e−(ωA−J )/ωc [2n̄(ωA − J ) + 1], (60)

	+− = G(ωA + J ) e−(ωA+J )/ωc [n̄(ωA + J ) + 1] + G(ωA − J ) e−(ωA−J )/ωc n̄(ωA − J ), (61)

	−+ = G(ωA − J ) e−(ωA−J )/ωc [n̄(ωA − J ) + 1] + G(ωA + J ) e−(ωA+J )/ωc n̄(ωA + J ), (62)

for ωA > |J | and

	++ = G(ωA + J ) e−(ωA+J )/ωc [2n̄(ωA + J ) + 1], (63)

	−− = G(|ωA − J |) e−|ωA−J |/ωc [2n̄(|ωA − J |) + 1], (64)

	+− = G(ωA + J ) e−(ωA+J )/ωc [n̄(ωA + J ) + 1] + G(|ωA − J |) e−|ωA−J |/ωc [n̄(|ωA − J |) + 1],

(65)

	−+ = G(|ωA − J |) e−|ωA−J |/ωc n̄(|ωA − J |) + G(ωA + J ) e−(ωA+J )/ωc n̄(ωA + J ), (66)

for J > ωA and

	++ = G|ωA + J | e−|ωA+J |/ωc [2n̄(|ωA + J |) + 1], (67)

	−− = G(ωA − J ) e−(ωA−J )/ωc [2n̄(ωA − J ) + 1], (68)

	+− = G|ωA + J | e−|ωA+J |/ωc n̄(|ωA + J |) + G(ωA − J ) e−(ωA−J )/ωc n̄(ωA − J ), (69)

	−+ = G(ωA − J ) e−(ωA−J )/ωc [n̄(ωA − J ) + 1] + G|ωA + J | e−|ωA+J |/ωc [n̄(|ωA + J |) + 1],

(70)

for −J > ωA. In particular, when the thermal reservoir is in the vacuum state (T = 0), we
find that limT →0 	−+ = 0 for J > ωA and limT →0 	+− = 0 for −J > ωA. If we ignore the
effect of the interaction between the qubits on the relaxation process, the damping operator
L̂(1)

Q vanishes and thus all the damping constants are equal to 	0 = GωA e−ωA/ωc [2n̄(ωA) + 1].
In this paper, although we have assumed the Ohmic dissipation of the thermal reservoir, the

phenomenological reservoir model [25, 41] can be also considered. In [25, 41], the functions

9
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Figure 2. The time evolution of the average value 〈σ̂ z
A(t)〉 in the cases of (a) kBT/h̄ωA = 0.01,

(b) kBT/h̄ωA = 0.8, (c) kBT/h̄ωA = 1.2 and (d) kBT/h̄ωA = 1.8. In the figure, we set G = 1.0,
ωc = 5.0, P0 = 0.2 and 〈σ̂ z

A(0)〉 = −0.6.

φ−+(ω) and φ+−(ω), the real parts of which must satisfy the detailed balance condition, are
assumed to be

φ−+(ωA) = G
eh̄ωA/2kBT

cosh
(

h̄ωA

2kBT

) , φ+−(ωA) = G
e−h̄ωA/2kBT

cosh
(

h̄ωA

2kBT

) . (71)

Then the damping parameters are given by

	++ = 	−− = 2G, (72)

	+− = G
eh̄(ωA+J )/2kBT

cosh
[

h̄(ωA+J )

2kBT

] + G
e−h̄(ωA−J )/2kBT

cosh
[

h̄(ωA−J )

2kBT

] , (73)

	−+ = G
eh̄(ωA−J )/2kBT

cosh
[

h̄(ωA−J )

2kBT

] + G
e−h̄(ωA+J )/2kBT

cosh
[

h̄(ωA+J )

2kBT

] , (74)

which satisfy limT →0 	−+ = 0 for J > ωA and limT →0 	+− = 0 for −J > ωA. All
the phase shifts �++,�−−,�+−,�−+ vanish in the phenomenological model. The Ohmic
dissipation model and the phenomenological model yield qualitatively the same results in our
consideration.

We now investigate the relaxation process of qubit A. Since the coherence given by〈
σ̂ +

A(t)
〉
decays to zero exponentially with the two damping constants 	++ and 	−−, we confine

ourselves to considering the population difference
〈
σ̂ z

A(t)
〉

between the two states of qubit A.
The time evolution is plotted in figure 2.

We find from the figure that the time evolution of the average value strongly depends
on the parameters J/ωA and P0 in the low temperature region (kBT/h̄ωA � 1) while the

10



J. Phys. A: Math. Theor. 43 (2010) 035303 M Ban

-4 -2 0 2 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

-4 -2 0 2 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

-4 -2 0 2 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

-4 -2 0 2 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

(a)

(c)

(b)

(d )

Figure 3. The dependence of the equilibrium value 〈σ̂ z
A(∞)〉 on the ratio J/ωA in the cases of (a)

kBT/h̄ωA = 0.05, (b) kBT/h̄ωA = 0.25, (c) kBT/h̄ωA = 0.6 and (d) kBT/h̄ωA = 1.2. The solid
line is for P0 = 0.2, the long-dashed line for P0 = 0.5 and the short-dashed line for P0 = 0.8. The
dotted horizontal line represents the equilibrium value that is obtained when the interaction effects
on the relaxation process are ignored.

dependence becomes weak in the high temperature region (kBT/h̄ωA 
 1). The equilibrium
value of 〈σ̂A(t)〉, namely

〈
σ̂ z

A(∞)
〉
, is plotted in figure 3.

We see from this figure that the equilibrium value can be controlled by setting the
parameters J/ωA and P0 in the low temperature region.

6. Decay of two-qubit entanglement

In this section, we investigate the decay of entanglement of the two qubits which are
initially prepared in the X-state given by equation (42). In the time evolution governed by
equation (13), the X-state is preserved and the two qubits at time t are still in the X-state (43).
Then the entanglement of the two qubits can be calculated from equation (50).

We first consider the case that the thermal reservoir is in the vacuum state (T = 0).
When the equality J > ωA holds, we obtain the matrix elements of the X-state from
equations (44)–(49):

a(t) = e−2	++t a(0), (75)

b(t) = b(0) + (1 − e−2	−−t )d(0), (76)

c(t) = (1 − e−2	++t )a(0) + c(0), (77)

11
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d(t) = e−2	−−t d(0), (78)

x(t) = e−i(ωA+ωB+�+−)t−	+−t x(0), (79)

y(t) = e−i(ωA−ωB+�−+)t y(0), (80)

where we have used the fact that 	−+ = 0 if J > ωA and T = 0. When x(0) �= 0 and
y(0) = 0, the entanglement sudden-death (ESD) [42, 43] takes place if the initial state is
entangled. On the other hand, when x(0) = 0 and y(0) �= 0, we obtain the concurrence

C(t) = 2 max[0, |y(0)| − e−(	+++	−−)t
√

a(0)d(0)]. (81)

This result shows that the entanglement can be created at the time te:

te = 1

	++ + 	−−
ln

(√
a(0)d(0)

|y(0)|
)

, (82)

even though there is no entanglement in the initial state, that is,
√

a(0)d(0) � |y(0)|. This
means that the entanglement sudden-birth (ESB) [44] occurs at the time te. In the equilibrium
state, we have C(∞) = 2|y(0)|. Therefore, we have found that the two qubits initially
prepared in the X-state with y(0) �= 0 are always entangled in the equilibrium state.

In the case that the inequality −J > ωA holds, we obtain from equations (44)–(49)

a(t) = a(0) + (1 − e−2	++t )c(0), (83)

b(t) = e−2	−−t b(0), (84)

c(t) = e−2	++t c(0), (85)

d(t) = (1 − e−2	−−t )b(0) + d(0), (86)

x(t) = e−i(ωA+ωB+�+−)t x(0), (87)

y(t) = e−i(ωA−ωB+�−+)t−	−+t y(0), (88)

where we have used the fact that 	+− = 0 when J > ωA and T = 0. The ESD takes place
when x(0) = 0 and y(0) �= 0 while the ESB occurs when x(0) �= 0 and y(0) = 0. In the latter
case, the concurrence is given by

C(t) = 2 max[0, |x(0)| − e−(	+++	−−)t
√

b(0)c(0)], (89)

which implies that although there is no entanglement in the initial state with
√

a(0)d(0) �
|y(0)|, the entanglement is created at the time te:

te = 1

	++ + 	−−
ln

(√
b(0)c(0)

|x(0)|
)

. (90)

In the equilibrium state, we have C(∞) = 2|x(0)|. Therefore, the two qubits initially prepared
in the X-state with x(0) �= 0 are always entangled in the equilibrium state.

On the other hand, when the inequality ωA > |J | is satisfied, we obtain

a(t) = e−2	+t a(0), (91)

b(t) = e−2	−t b(0), (92)

c(t) = (1 − e−2	+t )a(0) + c(0), (93)

d(t) = (1 − e−2	−t )b(0) + d(0), (94)

x(t) = e−i(ωA+ωB+�+−)t−	+t x(0), (95)

12
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Table 2. The lower energy state of qubit A.

The parameters The state of B The lower energy state of A

ωA > |J | |0〉 or |1〉 |1〉
−J > ωA > J |0〉 (|1〉) |0〉 (|1〉)
J > ωA > −J |0〉 (|1〉) |1〉 (|0〉)

y(t) = e−i(ωA−ωB+�+−)t−	−t y(0), (96)

which yields the concurrence,

C(t) = 2 max[0, C1(t), C2(t)] (97)

with

C1(t) = |y(0)| e−	−+t − e−	++
√

a(0)[(1 − e−2	−t )b(0) + d(0)], (98)

C2(t) = |x(0)| e−	+−t − e−	−−
√

b(0)[(1 − e−2	+t )a(0) + c(0)]. (99)

Thus for any initial X-state, there is no entanglement in the equilibrium state.
In the absence of the thermal reservoir, the Ising-type interaction between the two qubits

cannot create the entanglement. The concurrence remains unchanged during the time evolution
of the two qubits with the Ising-type interaction. In fact, we have a(t) = a(0), b(t) = b(0),
c(t) = c(0), d(t) = d(0), x(t) = x(0) e−i(ωA+ωB)t and y(t) = y(0) e−i(ωA−ωB)t for the X-state.
It is also obvious that the thermal reservoir which locally interacts with the qubit destructs the
entanglement and does not create it. Therefore, the ESB is caused by the synthetic effect of
the qubit–qubit interaction and the qubit–reservoir interaction. Mathematically the damping
operator L̂(1)

Q including the interaction effect has the essential importance in the ESB. It is
obvious that qubit A relaxes into the lower energy state under the influence of the thermal
reservoir with T = 0. The lower energy state of qubit A interacting with qubit B is determined
by the parameters ωA and J and the state of qubit B (see table 2).

It is understood from the table that the entanglement can exist in the equilibrium state
when ωA < |J | and qubit B is in a superposition of |0〉 and |1〉.

We next consider the decay of the entanglement under the influence of the thermal reservoir
with a finite temperature (T �= 0). For this purpose, we suppose that the two qubits are initially
prepared in the Werner state [36]:

ŴF (0) = F |�+〉〈�+| +
1 − F

3
(1̂ ⊗ 1̂ − |�+〉〈�+|), (100)

with |�+〉 = (|01〉 + |10〉)/√2, which is entangled if and only if F > 1/2 since the
concurrence is given by C(0) = max[2F − 1, 0]. Substituting a(0) = d(0) = 1

3 (1 − F)

b(0) = c(0) = 1
6 (1 + 2F), x(0) = 0 and y(0) = 1

6 (4F − 1) into equations (44)–(49), we
obtain the Werner state ŴF (t) at time t. The time evolution of the concurrence of the Werner
state ŴF (t) is plotted in figure 4. We find from the figure that the ESB takes place when
J/ωJ is large. In the case of the thermal reservoir with a finite temperature, the entanglement
created by the ESB decays with time.

Finally we consider the violation of the Bell inequality [45] in the two-qubit state ŴQ(t).
For this purpose, we introduce a 3 × 3 matrix T(t), whose matrix element is defined by
Tμν(t) = Tr[(σ̂ μ ⊗ σ̂ ν)ŴQ(t)]. We further introduce a symmetric matrix U(t) = TT(t)T(t).
Here we denote the eigenvalues of U(t) as u1(t), u2(t) and u3(t) with decreasing order.
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Figure 4. The concurrence of the Werner state ŴF (t) in the cases of F = 0.8 [(1-a), (1-b) and
(1-c)] and F = 0.3 ((2-a), (2-b) and (2-c)), where we set kBT/h̄ωA = 0.1 for (1-a) and (2-a) and
kBT/h̄ωA = 0.48 for (2-a) and (2-a) and kBT/h̄ωA = 0.58 for (3-a) and (3-a). In all the figures,
G = 1.0 and ωc/ωA = 5.0 are assumed.

Then the maximal average value of the Bell operator is given by 〈B̂(t)〉 = 2
√

u1(t) + u2(t)

[46]. If the inequality 〈B̂(t)〉 > 2 is satisfied, the Bell inequality is violated in the two-qubit
state ŴQ(t). Thus we can quantify the Bell inequality violation by B(t) = max[u1(t) +
u2(t) − 1, 0]. The Bell inequality is satisfied if and only if B(t) = 0. In the case of the
thermal reservoir with T = 0, we obtain B(∞) = max[0, 4|y(0)|2] for J > ωA and we obtain
B(∞) = max[0, 4|x(0)|2] for −J > ωA. Therefore, we find that if y(0) �= 0 and J > ωA or
if x(0) �= 0 and −J > ωA, the Bell inequality is violated in the equilibrium state, even though
it is fulfilled in the initial X-state.

7. Concluding remarks

In this paper, we have investigated the relaxation process of the interacting two-qubit system,
where one of the two qubits interacts with the thermal reservoir and the other is isolated
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from its environmental system. Using the projection operator method, we have derived the
quantum master equation of the two-qubit system. The damping operator consists of two
parts; one includes the effect of the interaction between the qubits and other does not. The
interaction effects have essential importance in the relaxation process of the two-qubit system.
In fact, the relaxation times and equilibrium value of the qubits strongly depend on the
interaction and the initial state. If we ignore the interaction effect, the relaxation process
of the qubit does not depend on them. Furthermore we have investigated the decay of the
two-qubit entanglement. We have found that not only the entanglement sudden-death but
also the entanglement sudden-birth can take place. Although the former is caused by the
interaction with the thermal reservoir, the latter is due to the synthetic effect of the qubit–
qubit interaction and the qubit–reservoir interaction. The synthetic effect can also violate the
Bell inequality, even if it is satisfied in the initial state. Finally it is important to note that
we have assumed the rotating-wave approximation for the interaction between the qubit and
the thermal reservoir, and thus some restrictions are applied to our results. For example, since
the rotating-wave approximation is broken down if ωA ≈ |J | is fulfilled, our results may be
modified in this case and so we need a further investigation. We will study the relaxation
process of the interacting qubits beyond the rotating-wave approximation in a future work. In
this paper we have investigated the decay of the single-particle coherence of qubit A which
directly interacts with the thermal reservoir and qubit B. We have also studied the decay of
the two-qubit entanglement. The decoherence of qubit B which indirectly interacts with the
thermal reservoir is also important. This problem has already been studied in [47, 48].
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